
‘-

1

John Beatty

AUTOMATING PROCESSING AND 
INTAKE IN THE INSTITUTIONAL 
REPOSITORY WITH PYTHON



‘-

2

INTRODUCTION
What are we doing here?



‘-

3

• Year 1: Faculty scholarship 

• Year 2: Law Journals & Alumni Publications 

Populating the Institutional 
Repository



‘-

4

It’s true I had zero Python programming knowledge at the start of 

this project. But I was starting with some knowledge:

• General programming knowledge & experience

• VisualBasic (17 years; 4 database applications built)

• Bash (basic knowledge)

• Perl (mostly forgotten knowledge)

• Has used a regular expression

Disclaimer/Full Disclosure



‘-

5

JOURNALS
The Law Journal Project



‘-

6

• Buffalo Environmental Law Review: 23 volumes, 1-2 issues/volume

• Buffalo Human Rights Law Review: 22 volumes, 1-2 issues/volume

• Buffalo Intellectual Property Journal: 11 volumes, 1-2 issues/volume

• Buffalo Journal of Gender, Law & Social Policy: 24 volumes, 1 

issue/volume

• Buffalo Law Review: 65 volumes, 3-5 issues/volume

• Buffalo Public Interest Law Review: 35 volumes, 1 issue/volume

The Law Journal Project: The Journals



‘-

7

• Convert Hein metadata to Digital Commons format 

• Load PDFs into Box drive

• Preview files in Box

• Check metadata against PDF and correct where necessary

• Cut and paste Box links into Digital Commons spreadsheet

• Upload

The Law Journal Project: Workflow



‘-

8

• August-November 2018

• All but first 22 volumes of Buffalo Law Review complete in mid-

November

The Law Journal Project: Timeline



‘-

9

THE PROBLEM
What’s so special about the Law 
Review?



‘-

10

• Some types of documents are 

in the system as a section 

rather than individual pieces

• Combined files have no 

individual metadata

• Some documents have no 

author data

• Some articles missing the last 

page

Conversion from 
HeinOnline to IR



‘-

11

• In HeinOnline, book reviews in a single BLR 

issue are all in one file

• All book reviews are signed, but no author data 

in HeinOnline

• In later volumes (processed first), issues contain 

2 book reviews at most; splitting and metadata 

creation was done by hand

• In early volumes, there are up to five book 

reviews an issue, so automation helpful

Book Reviews



‘-

12

• Case notes all combined into all case notes for 

an entire issue

• No individual note or author metadata

• 2-3 issues/volume

• 5-10 case notes/issue

• Same for legislative notes, but only a few issues 

have them

Case Notes & 
Legislative Notes



‘-

13

• Court of Appeals is highest court in New York

• Volumes 3-14 contain case note summaries for 

the prior year’s Court of Appeals term

• 1 or 2 issues/volume

• Up to 150 case notes/issue

• In most volumes, notes are signed

Court of Appeals



‘-

14

• In early volumes, notes did not always start at 

the top of a page

• All page breaks were at the start of the next 

note

• Some notes missing the last page

Student Notes & 
Comments



‘-

15

• In some cases, combined works are substantial (review essays)

• To properly credit alumni and faculty authors

• Some case notes are contemporary coverage of substantial changes in 

New York or United States law

• Some notes written by prominent alumni

Why do the extra work?



‘-

16

Previous Solution

• Requires 2 librarians and a student 

worker

Our Situation

• Tech services departments busy with 

massive LSP migration 

• Most departments shorthanded 

because of retirement

• No funding for student workers

Implementation Issues



‘-

17

• Personnel available: 1 Faculty Scholarship Librarian

• Drastically shorten the amount of time needed to generate metadata 

and split PDFs

• Use generated metadata and split PDFs in established workflow

The Solution: Automation



‘-

18

Proposed:

• Learn enough Python to start coding: 

1-2 weeks

• Write initial code and test: 1-2 weeks

• Process 22 volumes: 1 month

Actual:

• Learn enough Python to start: 3 days 

(Thanksgiving week)

• Initial code and test: 5 days 

(November 26-30)

• Process 22 volumes: 4 weeks 

(December 3-21, January 3-11)

Timelines

Note: Processing 

time included a LOT

of code tweaking.



‘-

19

THE PROJECT
First Steps



‘-

20

• John Mueller: Beginning Programming with Python for Dummies

• Kent D. Lee: Python Programming Fundamentals

• T.R. Padmanabhan: Programming with Python

• Python Documentation: https://docs.python.org/3/

• w3schools.com: https://www.w3schools.com/python/default.asp

• Automate the Boring Stuff: https://automatetheboringstuff.com/

Learning Python

https://docs.python.org/3/
https://docs.python.org/3/
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/default.asp
https://automatetheboringstuff.com/
https://automatetheboringstuff.com/
https://automatetheboringstuff.com/


‘-

21

• Laptop computer running Ubuntu Linux 18.04

• PyCharm Community Edition (free!)

• Python 3.6

Programming Environment



‘-

22

• PyPDF2: PDF toolkit that can be used to extract data and manipulate 

PDF files

• pdfminer: A tool for extracting information from PDF files (using 

pdfminer.six, for Python 3 compatibility)

• openpyxl: Python library to read and write Excel 2010 xlsx/xlsm files

• Standard Python libraries: argparse, os, re, csv, fnmatch, io

• Add-on libraries installed with PIP

Identifying Libraries



‘-

23

• Yes, two PDF libraries

• PyPDF2 has good tools for manipulating PDFs, but the documentation 

specifically says not to rely on the text extraction functions

• pdfminer is designed to extract information including text and layout from 

PDF files, so can be relied on for text extraction. But it doesn’t have the 

manipulation functions.

Wait… TWO PDF libraries?



‘-

24

THE PROJECT
Workflow



‘-

25

Just One Problem:

OCR. It’s not good enough to 

allow the code to consistently 

identify the metadata elements.

• Search through PDF for start page (PDF), end page (PDF), author, title, 

start page (printed)

• Split PDF into multiple files based on start and end pages

• Export metadata into Excel file to be cut and pasted into Digital 

Commons batch spreadsheets

Initial Workflow: Single Script



‘-

26

Use appropriate dsplit-XX.py to extract 

metadata. Use the --write-csv-only 

option because none of the OCR is 

good enough to trust that it’s right.

Scan file



‘-

27

Open the CSV file and check it against 

the original PDF. Fix titles, authors, and 

most importantly, start and ending 

pages for the PDF split. 

Check metadata



‘-

28

Feed hand-corrected CSV and original 

PDF back to dsplit-XX.py to split. For 

extra fun, hand-correct a couple of 

volumes, then use a bash script to run 

through them all while you get coffee.

Split PDF



‘-

29

Feed that CSV file to dc-convert.py. 

Copy everything back to the main 

computer. Cut and paste entries from 

exported Excel file into DC 

spreadsheet.

Convert CSV



‘-

30

Open split PDFs in Box preview. Check 

page split. Double-check metadata. Add 

disciplines. Cut and paste Box link.

Hand-check as normal



‘-

31

Main Python code—Contains all reusable code

• Author name and title manipulation (splitname, capitalize_title)

• PDF splitting code (splitpdf)

• PDF reading code (getpdf)

• CSV manipulation (importcsv, exportcsvnew, convertcsv)

• Page preparation (doublepages, croppages)

• PDF manipulation code (combinepdf, shiftpage, dirshift)

• Support code (getfilenames)

Most of these code segments called by external files that act as command-line interfaces

• E.g. dir-shift.py: Takes a path and passes it to dirshift

journaltools.py



‘-

32

• This is the main metadata extraction and PDF splitting code. 

• Different command line file is used for each type of file scanned

• Consists of a command-line interface and scanning code

• Remainder of code is the same for each. Calls to journaltools.py.

dsplit-XX.py



‘-

33

• combine-pdf.py: Used to combine Hein-split volume indexes back into a 

single file. Takes a path and combines all files in filename order.

• dc-convert.py: Exports CSV file to an Excel file, with metadata in the 

proper columns to be cut and paste into DC upload sheets.

• dir-shift.py: Takes a path; copies the first page of every file and adds it as 

the last page of the previous file in the directory

• page-shift.py: Takes two files and copies the first page of the second file 

and adds it to the end of the first file (quickly replaced by dir-shift.py)

Other functions



‘-

34

EXTENSIONS
What else can I do with this thing I built?



‘-

35

• Five new issues a year need to be processed and uploaded

• NO OCR text

• New command line program extracts metadata from a single file

• Bash script used to scan all articles and write to a single CSV

• Total processing time for an issue: About 15 minutes

New volumes of Buffalo Law Review



‘-

36

• 38 volumes, 1-2 issues/volume

• OCR text too unpredictable to automatically scan for metadata

• Contents page fairly comprehensive

• Partial automation solution

• Contents text copied and pasted into text editor, cleaned up with search 

and replace, then copied into Excel file

UB Law Forum



‘-

37

• New code to crop from full magazine page scans to 8.5 x 11

• New code to convert hand-built Excel file to CSV

• PDF splitting and export command lines re-used

UB Law Forum



‘-

38

• The journaltools code, at GitHub

https://github.com/johnrbeatty/journaltools

• These slides

https://digitalcommons.law.buffalo.edu/law_librarian_other_scholarship/

Resources

https://github.com/johnrbeatty/journaltools
https://github.com/johnrbeatty/journaltools
https://digitalcommons.law.buffalo.edu/law_librarian_other_scholarship/
https://digitalcommons.law.buffalo.edu/law_librarian_other_scholarship/

